Given the electric field of a complete amplitude modulated wave as

$$\vec{E} = \hat{i} E_c \left(1 + \frac{E_m}{E_c} \cos \omega_m t \right) \cos \omega_c t$$

Where the subscript c stands for the carrier wave and *m* for the modulating signal. The frequencies present in the modulated wave are [Online May 19, 2012]

Enablishe LGMH

$$\bigcirc \omega_c$$
 and $\sqrt{\omega_c^2 + \omega_m^2}$

$$\bigcirc \omega_{c}$$
, ω_{c} + ω_{m} and ω_{c} – ω_{m}

 $\bigcirc \omega_c$ and ω_m

$$\bigcirc \omega_c$$
 and $\sqrt{\omega_c \omega_m}$

